Nghiên cứu mô hình học sâu Faster R-CNN để phát hiện và phân loại các tổn thương khu trú thường gặp ở gan trên ảnh chụp cắt lớp vi tính
Bài viết trình bày mục tiêu nghiên cứu: Thu thập dữ liệu, xây dựng, huấn luyện mô hình Faster R-CNN để phát hiện, phân loại các tổn thương khu trú thường gặp ở gan; Kiểm thử, đánh giá hiệu quả mô hình theo tiêu chí về thời gian, độ chính xác. Đối tượng và phương pháp nghiên cứu: Bộ dữ liệu ảnh chụp cắt lớp vi tính tiêm thuốc cản quang vùng bụng có tổn thương gồm nang gan, u mạch máu, ung thư tế bào gan nguyên phát.
Xin lỗi bạn không thể down load tài liệu này. Bạn có thể xem tài liệu trực tuyến trên website hoặc liên hệ thư viện trường để được hướng dẫn. Cảm ơn bạn đã sử dụng dịch vụ của chúng tôi.
Bạn vui lòng tham khảo thỏa thuận sử dụng của thư viện số.